If it's not what You are looking for type in the equation solver your own equation and let us solve it.
f^2+13f=0
a = 1; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·1·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*1}=\frac{-26}{2} =-13 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*1}=\frac{0}{2} =0 $
| x+1x=45 | | x^2+0.6-1.6=0 | | 4k=-2+18 | | 4k=-2+24 | | -48=17x-9x | | 4k=-2-18 | | (x-11)(x-6)=0 | | d2+7d–8=0 | | Y=x/6+8 | | 8y-2y+y-7y+y=2 | | d^2+7d–8=0 | | 4k=-2-6 | | Y=2(x+6) | | 10x+9=6+29 | | 6+4x=48-8x | | 1/(2x)=1/(6x)+(2x-3)/(3x^2) | | y/3+14=29 | | 2v^2+33v+16=0 | | 2v2+33v+16=0 | | 20j+j-21j+21j=16 | | 18-13=y | | 15=(2+x) | | 3x+12=7+5x-3=18 | | 6p-6p+2p=20 | | 8x+48+10=10x-2x+8 | | x+95=x+35 | | 0.15x+30=0.20x+5 | | 18p+4p+3p-20p-p=16 | | 7u-3u-3u+2u=15 | | 25=x/3+6 | | 5x+6(1.25x)=26250 | | 6−2p=4 |